Mastocytosis: Pathology, genetics, and current options for therapy

PETER VALENT1, CEM AKIN2, WOLFGANG R. SPERR1, MATTHIAS MAYERHOFER1, MANUELA FÖDINGER3, ROBERT FRITSCHE-POLANZ3, KARL SOTLAR4, LUIS ESCRIBANO5, MICHEL AROCK6, HANS-PETER HORNY7, & DEAN D. METCALFE8

1Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria; 2Division of Allergy, University of Michigan, Ann Arbor, MI, USA; 3Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Austria; 4Institute of Pathology, University of Tübingen, Germany; 5Mast Cell Unit, Hospital Ramón y Cajal, Madrid, Spain; 6CNRS Unit UMR8147 ‘Cytokines, hematopoiesis, and immune response’, Faculté de Pharmacie, Paris, France; 7Institute of Pathology, University of Lübeck, Germany; and 8Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, USA

Abstract

Mast cell disorders are defined by an abnormal accumulation of tissue mast cells (MCs) in one or more organ systems. Symptoms in mastocytosis result from MC-derived mediators and, less frequently, from destructive infiltration of MCs. Cutaneous mastocytosis (CM) is a benign disease of the skin and may regress spontaneously. Systemic mastocytosis (SM) is a persistent disease in which a somatic c-kit mutation at codon 816 is usually detectable in MCs and their progenitors. The clinical course in these patients is variable ranging from asymptomatic for years to highly aggressive and rapidly devastating. The WHO discriminates five categories of SM: indolent SM (ISM), aggressive SM (ASM), SM with associated clonal hematological non-MC-lineage disease (AHNMD), and mast cell leukemia (MCL). The c-kit mutation D816V is quite common and may be found in all SM-categories. In SM-AHNMD, additional genetic abnormalities have been reported, whereas no additional defects are yet known for ASM or MCL. Patients with ISM and CM are treated with ‘mediator-targeting’ drugs, whereas patients with ASM or MCL are candidates for cytoreductive therapy. The use of ‘Kit-targeting’ tyrosine kinase inhibitors such as STI571 (Imatinib, Gleevec), has also been suggested. However, the D816V mutation of c-kit is associated with relative resistance against STI571. Therefore, these patients require alternative targeted drugs or new drug-combinations. In patients with SM-AHNMD, separate treatment plans for the SM-component and the AHNMD should be established. Examples include the use of STI571 in patients with SM plus hypereosinophilic syndrome (SM-HES) and the FIPPI/PDGFRA fusion gene target, or chemotherapy for eradication of AML in patients with SM-AML.

Keywords: mast cells, mastocytosis, classification, criteria

Biology of mast cells – basic concepts

Mast cells are hematopoietic cells with unique functional properties and a distinct composition of mediators and antigens [1,2]. In contrast to basophils and other leukocytes, MCs are long-lived cells with an estimated life span of several months. When mature, MCs reside in vascularized tissues in diverse organs, often in vicinity to smaller or larger blood vessels or nerve fibers [1,2]. In routinely processed tissue sections, MCs can usually be identified by their content of metachromatic granules [1,2]. Within these granules, MCs store vasoactive and immunoregulatory mediators including histamine, heparin, and cytokines [1–3]. Several mediators including histamine are released from MCs in response to aggregation of the high affinity IgE receptor, activation through complement receptors, or activation by cytokines [1–3]. Other mediators, such as tryptase, are both constitutively secreted from MCs and released after MC activation. Baseline tryptase levels can be measured in the serum as an MC-related marker believed to correlate with the total MC burden in normal subjects as well as in patients with MC proliferative disorders [4–6].

Mast cells reportedly are derived from hematopoietic progenitor cells which reside in the bone marrow, but can also be detected in the peripheral
blood [7–11]. It is assumed that precommitted and MC-committed progenitors are circulating cells that have the capacity of transmigration, and undergo differentiation and maturation in vascularized tissues [12]. Several cytokines and the local microenvironment are considered to contribute to growth and differentiation of MCs in the tissues. The most important cytokine is mast cell growth factor, also termed stem cell factor (SCF), or KIT-ligand. This stroma cell-derived cytokine induces the development of MCs from their uncommitted and MC-committed progenitors [8–15]. Mast cell progenitors in turn, express a specific receptor for SCF [10,12,16]. This tyrosine kinase-receptor (KIT) is encoded by the c-kit proto-oncogene [12,16]. KIT and SCF are considered essential for the development and differentiation of MCs. Supporting this concept, defects in c-kit- or the scf gene in mice lead to MC-deficiency [17,18]. By contrast, “gain-of-function mutations” in the c-kit proto-oncogene are associated with enhanced survival (and under certain circumstances with autonomous growth) of MCs and their progenitors [19,20]. Such mutations, particularly c-kit D816V, are frequently detected in patients with systemic mastocytosis (SM) [21–26].

Pathogenesis of mastocytosis – current status

The common pathogenetic hallmark of mastocytosis, shared by all disease variants, is the focal accumulation (clustering) of MCs in various organs [27–30]. Depending on the disease-variant, MCs and their progenitors may also show increased proliferative capacity compared to normal MCs [27–30]. However, to date, little is known concerning pathogenetic factors that contribute to the development of disease variants and disease progression. Likewise, so far, no clear pathogenetic concept has been presented for cutaneous mastocytosis, a disorder apparently confined to the skin that often presents as a self-limiting disease process, particularly in children. It remains unclear whether (all) these patients suffer from a monoclonal MC accumulation in the skin. In fact, only a few of these patients reportedly exhibit mutations in c-kit. It has been hypothesized that if such a c-kit mutation is present at codon 816, the disease process may often be programmed to become systemic and to persist [23,24,31].

In systemic mastocytosis (SM), monoclonality of the disease is well established in most instances, and several pathogenetic concepts have been developed [32–34]. The most important concept relates to the c-kit point mutation D816V, that is detectable in the majority (> 80%) of all patients with SM [20–26,35]. The D816V c-kit mutation is considered to represent an important “hit” contributing to disease development and possibly to differentiation/maturation and abnormal clustering of neoplastic cells (MC, progenitors) in the tissues [19,20]. By contrast, this mutation alone may be unable to act as a proliferation-enhancing oncogene in all cases [36]. However, c-kit D816V may play an important and possibly causative role in indolent SM, where the pathologic hallmark is MC differentiation (from immature myeloid progenitor cells) and MC clustering without signs of a substantial proliferation. The same does not appear to hold true for advanced MC neoplasms, i.e. aggressive SM (ASM) or mast cell leukemia (MCL), in which c-kit D816V can also be detected, but where MC progenitors, in addition to clustering, may show increased proliferative capacity [27–30,32,33]. In these patients, additional (genetic) defects, that remain to be identified, are likely to contribute to (and possibly cooperate with c-kit D816V in) the uncontrolled growth of MCs and their progenitors, and the resulting (adverse) clinical course.

It has also been suggested that, apart from D816V, other c-kit mutations may play a role in the development of MC disorders [37–39]. Notably, in patients with SM, several c-kit mutations have been identified (Table I). In addition, various chromosomal defects, other gene defects, and genetic polymorphisms have been discussed as contributing to the pathogenesis of SM [40–44]. Many of these defects are detected in patients who have an additional myeloid neoplasm apart from SM, i.e. an associated hematopoietic clonal non-MC lineage disease (AHNMD). Most of these defects have recently been linked to distinct myeloid neoplasms and have been defined as disease criteria by the WHO. Other defects, such as the FIPL1/PDGFRA fusion gene, have recently been associated with specific myeloid neoplasms but are not (yet) mentioned in the WHO classification. Nevertheless, these gene defects may also be reliable discriminative markers sufficient to define a certain subtype of AHNMD in patients with SM. Thus, the presence of eosinophilia and FIPL1/PDGFRA in a patient with SM aids in the diagnosis of SM with hypereosinophilic syndrome (SM-HES), a special subvariant of SM-AHNMD. Table I provides a summary of chromosomal and gene-defects that have been identified in patients with SM.

A second important pathogenetic aspect in SM is the abnormal expression of cell surface adhesion antigens on neoplastic MCs [45–47]. Several antigens specifically detectable on neoplastic MCs in SM, such as CD2 (LFA-2), represent cell-cell adhesion molecules. Since MCs also express CD58...
(LFA-3), the natural ligand of CD2, an attractive hypothesis is that CD2-CD58-dependent aggregation of MCs in patients with SM contributes to abnormal MC-cluster formation in these patients [46]. However, MCs in SM also express other cell-cell adhesion molecules such as CD29 (β1 chain of β1 integrins), CD47, CD54 (ICAM-1), or CD172a (SIRPα) [48–50]. However, these antigens are also detectable on normal MCs, whereas CD2 is only found on MCs in patients with SM [45–47]. Whether adhesion molecules, especially CD2, indeed play a pathogenetic role in SM remains at present unknown. It is also unknown whether the c-kit mutation D816V, or another defect, is responsible for abnormal expression of CD2 (or other adhesion-related molecules) on MCs in patients with SM. Whatever the relationship is, it is assumed that increased MC differentiation and cluster-formation are important aspects in early development of SM triggered by an initial mutation, whereas disease evolution with enhanced proliferation of MCs may be associated with other (later occurring) gene-defects. Figure 1 shows a hypothetical scheme of disease evolution in patients with SM.

Table I. Recognized gene defects, gene polymorphisms, and karyotype abnormalities detectable in patients with (systemic) mastocytosis

<table>
<thead>
<tr>
<th>Finding</th>
<th>Reported in patients with SM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene defects</td>
<td></td>
</tr>
<tr>
<td>c-kit D816V</td>
<td>all variants of SM (> 80)</td>
</tr>
<tr>
<td>(and in some with CM)</td>
<td></td>
</tr>
<tr>
<td>c-kit D816Y</td>
<td>CM, SM, SM-AHNMD (< 5)</td>
</tr>
<tr>
<td>c-kit D816F</td>
<td>CM (< 5)</td>
</tr>
<tr>
<td>c-kit D816H</td>
<td>SM-AHNMD (< 5)</td>
</tr>
<tr>
<td>c-kit D820G</td>
<td>ASM (< 5)</td>
</tr>
<tr>
<td>c-kit V560G</td>
<td>SM (< 5)</td>
</tr>
<tr>
<td>c-kit F522C</td>
<td>SM (< 5)</td>
</tr>
<tr>
<td>c-kit E839K</td>
<td>CM (< 5)</td>
</tr>
<tr>
<td>c-kit V530I</td>
<td>SM-AML (< 5)</td>
</tr>
<tr>
<td>c-kit K509I</td>
<td>SM (familial type) (< 5)</td>
</tr>
<tr>
<td>FIPL1/PDGFRA*</td>
<td>SM with eosinophilia (< 5)</td>
</tr>
<tr>
<td>Gene polymorphisms</td>
<td></td>
</tr>
<tr>
<td>IL-4Rα Q576R</td>
<td>CM, indolent SM (ISM) n.k.</td>
</tr>
<tr>
<td>Karyotype abnormalities</td>
<td></td>
</tr>
<tr>
<td>del 20(q12)*</td>
<td>SM, SM-AHNMD (< 5)</td>
</tr>
<tr>
<td>+ 9*</td>
<td>SM, SM-AHNMD (< 5)</td>
</tr>
<tr>
<td>t(8;21)*</td>
<td>SM-AML M2 (< 5)</td>
</tr>
</tbody>
</table>

CM, cutaneous mastocytosis; SM, systemic mastocytosis; SM-AHNMD, SM with an associated hematologic clonal non-mast cell lineage disease.

* These gene abnormalities are indicative of an AHNMD.

Figure 1. The stem cell hypothesis. Concepts of clonal evolution of systemic mastocytosis (SM) and associated clonal hematologic non-mast cell lineage disorders (AHNMD) from immature precommitted neoplastic stem cells (neoplasm-initiating cell). In some of the patients with SM-AHNMD, both the SM and the AHNMD is found to display c-kit D816V (SM+/AHNMD+). In these patients, clonal evolution leading to the AHNMD is likely to occur in a c-kit D816V+, SM-initiating cell. One example is SM-CMML, where CMML cells frequently exhibit c-kit D816V. In other patients, only the SM-component of the disease, but not the AHNMD, harbors the c-kit mutation (SM+/AHNMD−). This situation is often seen in SM-AML. In these patients, the leukemia-initiating defect (such as t(8;21)) and the c-kit mutation D816V may occur in two separate subclones, both of which derive from the same neoplasm-initiating cell. The c-kit mutation D816V alone (as a single defect) is not believed responsible for the development of an AHNMD or aggressive disease. Rather this mutation is also found in patients with completely indolent systemic mastocytosis (ISM). The gene defects that contribute to transformation into aggressive systemic mastocytosis (ASM) or mast cell leukemia (MCL) remain at present unknown (?).

Diagnostic criteria and WHO classification

Traditionally, mastocytosis has been separated into cutaneous mastocytosis (CM) and systemic mastocytosis (SM) [27–30]. Localized mast cell tumors (mastocytomas and mast cell sarcoma) are very rare [27,28]. CM has its usual onset before puberty [51]. By contrast, most patients presented in adulthood are diagnosed with SM. In these individuals, the
diagnosis is usually established by a bone marrow examination [52,53]. Apart from the bone marrow, other organs such as the liver or the gastrointestinal tract, may also be affected in SM [54–58]. In contrast to SM, CM shows spontaneous regression in a significant number of cases [59].

Systemic mastocytosis is a persistent disease in which the c-kit mutation D816V is often detected [20–26]. In some SM-patients, this mutation is not only found in MCs, but also in non-MC-lineage hematopoietic cells [25,26,60–64]. Based on such data, SM is now accepted to be a myeloproliferative disorder [32–34]. This concept is consistent with the observation that MCs derive from myelopoietic progenitors [7–11] and with the relatively high incidence of associated hematologic (clonal) non MC-lineage diseases (AHNMD) including secondary acute myeloid leukemias (AMLs) that occur in these patients [65–68] (Fig. 1).

During the last few years, substantial progress has been made in the morphological, phenotypic, and genetic characterization of neoplastic MCs [32–35]. Based on these advances, an updated consensus classification for mastocytosis has been worked out [69,70]. This WHO classification is based on specific criteria that help in the differentiation between SM and CM, between SM and myelomastocytic disorders, and between SM and a reactive MC hyperplasia or in myelomastocytic disorders. For example, advanced myeloid neoplasms may exhibit an increase in diffusely spread MCs in the bone marrow or the differential blood count, the final diagnosis is myelomastocytic leukemia [76,78]. The major SM-criterion is the presence of compact dense multifocal MC infiltrates within a bone marrow biopsy section. The most suitable marker for MC detection in such biopsies is tryptase [71–74]. Thus, antibodies against tryptase detect even small-sized compact or diffuse MC infiltrates [71–74]. Compact MC infiltrates are diagnostic and are sometimes also detected in extramedullary visceral organs [53–58]. Apart from compact sharply demarcated MC infiltrates, other types of MC infiltrates have been described with correlation between MC patterns and the subtype of SM [52,53]. In more advanced MC disorders (ASM, MCL), MC infiltrates often are diffuse or mixed, the latter also being termed compact infiltrates with diffuse component [52,53]. In patients with ASM or MCL, the remaining bone marrow architecture is often altered by the MC infiltrate, whereas this is not the case in typical ISM. Here, MC infiltration does not lead to an alteration in the architecture of the remaining (surrounding) normal bone marrow even if some MCs are diffusely spread in these areas [52,53].

Minor diagnostic criteria for SM

Minor SM criteria relate to the morphology of MCs (spindle shaped, atypical MCs type I), their phenotypic (CD2, CD25), elevated serum tryptase, and demonstration of codon 816 mutations of c-kit [69,70]. The application of such criteria is often crucial in the diagnostic work up, since MCs may also increase and even form focal infiltrates in reactive MC hyperplasia or in myelomastocytic disorders. For example, advanced myeloid neoplasms may exhibit an increase in diffusely spread MCs in the bone marrow without cytological or biochemical evidence of SM [75–78]. If the percentage of MCs in these patients exceeds 10% of all nucleated cells in the bone marrow or the differential blood count, the final diagnosis is myelomastocytic leukemia [76,78]. Major and minor SM criteria are listed in Table II. Table III shows differential diagnoses to be considered in suspected SM.

Morphology of Mast Cells in Bone Marrow Smears

The bone marrow smear in suspected SM may show an increase in the number of MCs, abnormal morphology of MCs, or additional cytomorphological abnormalities such as myelodyplasia, eosinophilia, or

Table II. Criteria defining systemic mastocytosis: SM criteria

Major:*	Multifocal dense infiltrates of MCs in bone marrow or other extracutaneous organ(s) (> 15 MCs in aggregate) found in bone marrow sections (tryptase-stained)
Minor:*	MCs in bone marrow or other extracutaneous organ(s) show an abnormal morphology, i.e. type I MCs (> 25%) in bone marrow smears or in histologies c-kit mutation at codon 816** in extracutaneous organ(s) (in most cases, bone marrow cells are examined by RFLP)
	MCs in bone marrow express CD2 and/or CD25 (determined by flow cytometry***)
	Serum total tryptase > 20 ng/ml (does not count in patients who have AHNMD-type disease)

* If at least one major and one minor or at least three minor criteria are fulfilled, the diagnosis SM can be established (69,70).
** Activating mutations at codon 816, in most cases c-kit D816V.
*** The test result can be confirmed by immunohistochemistry.
SM, systemic mastocytosis, MCs, mast cells.

Histology and immunohistochemistry (major criterion)

The most important step in the diagnostic work up of adult patients is a thorough examination of the bone marrow biopsy (and aspirate) [27–30,52,53,71]. The major SM-criterion is the presence of compact dense multifocal MC infiltrates within a bone marrow biopsy section. The most suitable marker for MC detection in such biopsies is tryptase [71–74]. Thus, antibodies against tryptase detect even small-sized compact or diffuse MC infiltrates [71–74]. Compact MC infiltrates are diagnostic and are sometimes also detected in extramedullary visceral organs [53–58].

Apart from compact sharply demarcated MC infiltrates, other types of MC infiltrates have been described with correlation between MC patterns and the subtype of SM [52,53]. In more advanced MC disorders (ASM, MCL), MC infiltrates often are diffuse or mixed, the latter also being termed compact infiltrates with diffuse component [52,53]. In patients with ASM or MCL, the remaining bone marrow architecture is often altered by the MC infiltrate, whereas this is not the case in typical ISM. Here, MC infiltration does not lead to an alteration in the architecture of the remaining (surrounding) normal bone marrow even if some MCs are diffusely spread in these areas [52,53].
an increase in blasts, which raises the suspicion of an associated hematopoietic non-MC lineage disease [69,70,79]. In normal bone marrow, the percentage of MCs is very low (< 0.1%). In patients with SM, the percentage is usually higher [79]. A mast cell percentage of > 10% in bone marrow smears is associated with a poor prognosis and often is indicative of aggressive disease [79]. If the percentage of MCs exceeds 20%, the diagnosis of MC leukemia should be considered, provided that SM criteria are met [79]. Based on consensus criteria, four distinct stages of MC maturation have been defined: the non-granulated (tryptase+) blast, the metachromatically granulated blast (metachromatic blast), the promastocyte (atypical MC type II = MC with bi- or multilobed nuclei), and the mature MC (typical mononuclear MC) (Table IV) [69,70,79]. Immature MCs are frequently recorded in bone marrow smears in patients with aggressive SM (ASM) or mast cell leukemia (MCL) [79]. In indolent SM (ISM), bone marrow MCs are more mature, albeit they do show characteristic morphological abnormalities including cytoplasmic extensions, oval nuclei, and a hypogranulated cytoplasm [79]. Such MCs are termed “atypical MCs type I” and are detected in the majority of all patients with ISM [79].

Abnormal Immunophenotype of Mast Cells in Mastocytosis

Mast cells exhibit a characteristic cell surface antigen phenotype in normal tissues as well as in mastocytosis [32,45–50]. In patients with SM, a number of CD antigens are usually over-expressed on bone marrow MCs compared to normal MCs [45–47]. Most significantly, MCs in patients with SM usually co-express CD2 and CD25, two surface antigens that are not found on normal MCs [45–47]. Therefore, abnormal expression of at least one of these two antigens on MCs is employed as a minor criterion of SM [69,70]. Expression of CD2 and CD25 in bone marrow MCs can be investigated by flow cytometry [45–47] or by immunohistochemistry [80,81]. In both instances, CD25 is the more sensitive parameter. Likewise, in multicolor flow cytometry staining techniques, it is appropriate to use the more sensitive PE-label for CD2 and the somewhat less sensitive FITC-label for CD25. Immunohistochemical staining data may be used to confirm the test result.

Serum Tryptase Measurement

Tryptase is a well-established and important disease-related marker which should be determined in patients with suspected mastocytosis [4–6]. In healthy individuals, the total serum tryptase levels range between < 1 and 15 ng/ml [4–6]. In patients with CM without

Table III. Systemic mastocytosis—differential diagnosis

<table>
<thead>
<tr>
<th>a. Systemic disorders mimicking mast cell mediator-effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular diseases (with hypotension and shock)</td>
</tr>
<tr>
<td>Endocrinologic disorders (diabetes, adrenal tumors, VIPoma, . . .)</td>
</tr>
<tr>
<td>Neurologic and psychiatric disorders (encephalopathy, neuritis, . . .)</td>
</tr>
<tr>
<td>Gastrointestinal disorders (Crohn’s disease, ulcerative colitis, . . .)</td>
</tr>
<tr>
<td>Infectious diseases (parasitic infections, hepatitis, others)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. Benign disorders associated with mast cell activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergies, atopic disorders</td>
</tr>
<tr>
<td>Benign cutaneous flushing</td>
</tr>
<tr>
<td>Idiopathic anaphylaxis</td>
</tr>
<tr>
<td>Chronic urticaria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c. Local mast cell hyperplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunocytoma with reactive focal increase in mast cells</td>
</tr>
<tr>
<td>Cutaneous tumors (melanomas, basal cell carcinoma)</td>
</tr>
<tr>
<td>Chronic inflammation (autoimmune disorders, intestinal ulcer, . . .)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d. Myelomastocytic overlap syndromes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelomastocytic leukemia (myeloid neoplasm with increase in MCs but criteria to diagnose SM not fulfilled)</td>
</tr>
<tr>
<td>Tryptase-positive acute myeloid leukemia (AML)</td>
</tr>
<tr>
<td>KIT+ AML with blast cells expressing CD2 (FAB AML-M4eo, some M3)</td>
</tr>
<tr>
<td>AML with aberrant expression of c-kit point mutations at codon 816</td>
</tr>
<tr>
<td>Chronic myeloid leukemia with accumulation of tryptase + cells</td>
</tr>
<tr>
<td>Idiopathic myelofibrosis with focal accumulation of mast cells</td>
</tr>
<tr>
<td>Acute or chronic basophilic leukemia</td>
</tr>
</tbody>
</table>

SM criteria are sufficient to discriminate SM from these differential diagnoses.

Table IV. Subsets of mast cells defined by morphological criteria

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Morphological properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metachromatic blast*</td>
<td>Blast-like, few metachromatic granules at this stage of maturation, the lineage (mast cell vs. basophil) can not be defined by morphologic criteria alone</td>
</tr>
<tr>
<td>Promastocyte* = atypical mast cell type II*</td>
<td>Mostly immature mast cells with bi- or multi-lobed nuclei, often hypogranulated</td>
</tr>
<tr>
<td>Atypical mast cell type I</td>
<td>Mast cells in which 2 of the 3 following morpho-logical aspects are found: a. cytoplasmic extensions (spindle shape) b. hypogranulated cytoplasm c. oval decentralized nucleus</td>
</tr>
<tr>
<td>Mature mast cell* = typical tissue mast cell*</td>
<td>Round cell with round central nucleus and well granulated cytoplasm</td>
</tr>
</tbody>
</table>

* These cell types can also be identified in SCF-dependent progenitor cell cultures.
systemic involvement, serum tryptase levels are normal to slightly elevated [4–6]. The same is true for most cases with “isolated” bone marrow mastocytosis without multiorgan involvement [6]. Higher tryptase values increase the likelihood of multiorgan involvement. Thus, in most patients with SM, total serum tryptase levels exceed 20 ng/ml [4–6]. Moreover, tryptase levels in SM are believed to correlate with the burden of neoplastic MCs [5,6]. Notably, however, elevated total tryptase levels have not only been detected in SM, but also in other myeloid neoplasms, especially acute and chronic myeloid leukemias and myelodysplastic syndromes (MDS) without mastocytosis [82–85]. Moreover, total serum tryptase levels may transiently increase during a severe allergic reaction [85,86]. Thus, MC tryptase alone cannot be regarded as a disease-specific and diagnostic marker of SM. Based on these limitations, a persistent elevation of serum tryptase levels is believed to correlate with the burden of neoplastic MCs [5,6]. Notably, however, elevated total tryptase levels have not only been detected in SM, but also in other myeloid neoplasms, especially acute and chronic myeloid leukemias and myelodysplastic syndromes (MDS) without mastocytosis [82–85]. Moreover, total serum tryptase levels may transiently increase during a severe allergic reaction [85,86]. Thus, MC tryptase alone cannot be regarded as a disease-specific and diagnostic marker of SM. Based on these limitations, a persistently elevated serum tryptase level of >20 ng/ml is employed as a minor criterion of SM, provided that an AHNMD has been excluded. To restate: in the presence of an AHNMD, the serum tryptase does not count as a criterion of SM [69]. All in all, an important first step in the evaluation of patients with suspected mastocytosis is the determination of the serum tryptase level (as a screen test) with recognition of potential limitations of the test [4–6,87]. In adult patients with a persistently elevated tryptase, the likelihood of SM is significant, and a bone marrow examination warranted.

Recommended Molecular and Cytogenetic Tests

The examination of the bone marrow in suspected SM should include an analysis of c-kit for codon-816 mutations. The most sensitive (and therefore recommended) routine test may be restriction fragment length polymorphism analysis (RFLP) [35]. In patients with suspected SM, the mutation should always be sought using bone marrow cells. If the test is negative in a bone marrow sample, sequence analysis to screen for other c-kit mutations, may be required. However, any sequence analysis may yield false-negative results because of the level of sensitivity [35]. By contrast, a false-negative RFLP result is unusual unless MC infiltrates in the bone marrow are very small (as in bone marrow mastocytosis) or when MCs are outnumbered by leukemic (D816V-negative) cells. In such patients, the mutation may only be detected when enriched (sorted or microdissected) bone marrow MCs are analyzed.

In patients with (suspected) AHNMD, bone marrow cells should not only be examined for the presence of c-kit mutations, but should also be subjected to appropriate molecular analyses seeking specific fusion genes or specific chromosomal defects related to hematopoietic neoplasm (Fig. 2) [34]. Likewise, in patients with co-existing eosinophilia, bone marrow and/or blood cells should be examined for the presence of the FIPL1/PDGFRA fusion gene [33]. In SM-AML, the t(8;21) is often detected (Table I). Apart from molecular markers and chromosomes, it may sometimes be appropriate to measure the numbers of colony-forming progenitor cells in patients with suspected SM-AHNMD [34,88].

Categories and subvariants of mastocytosis and current therapy options

The delineation of subcategories of CM is based on macroscopic inspection and biopsy of lesional skin [51,89–91]. Based on these aspects, three major variants have been defined: maculopapular CM (urticaria pigmentosa), diffuse CM, and solitary mastocytoma of skin [51,69,70,89–91].

In patients with SM, a number of staging investigations are required to define the exact subtype of disease. Aggressive SM is characterized by progressive infiltration of diverse organs by MCs, with resulting impairment of organ-function—respective findings are called C-Findings [69,70,92]. Mast cell infiltration associated with organomegaly should not be regarded as organopathy (C-Finding) unless accompanied by signs of impaired organ function [69,92]. Thus, organomegaly is also found in patients with an indolent or an uncertain (smouldering) course [60–64], and then is regarded as a B-Finding [69]. B- and C-Findings are listed in Table V. In patients with suspected AHNMD [65–68], WHO criteria (for SM and for AHNMD) are employed to define the subvariant (Table I) [69]. Sometimes it may be difficult to discriminate between SM-AML, MCL, and a myelomastocytic leukemia [75,76,78]. MCL is a rare subentity of SM where SM criteria are fulfilled and there is a diffuse leukemic infiltration of hematopoietic tissues by immature neoplastic MCs [27–30,69,70,92–94]. In contrast to ISM, patients with MCL lack UP-like skin lesions [27–30,69,70,92–94]. Table VI provides a summary of variants of mastocytosis recognized by the WHO, and in Fig. 2 a practical guide for the delineation of MC proliferative disorders is presented.

An important aspect of mastocytosis is the frequent occurrence of mediator-related symptoms. These symptoms may be mild, but may also be severe or even life-threatening [95–97]. It is important to be aware that such severe symptoms can occur in any subvariant of mastocytosis (CM or SM), and that the symptoms are not by themselves diagnostic of an aggressive disease (not regarded as C-Findings).

The following sections provide a brief overview of distinct variants of mastocytosis recognized by the
WHO, with special reference to diagnostic criteria and available treatment options.

Cutaneous Mastocytosis (CM)

CM preferentially develops in early childhood, whereas development of CM in adulthood is unusual [51,90]. By definition, MC infiltration in patients with CM is confined to the skin [51,69]. In most cases, a characteristic maculopapular rash is observed [51,89,90]. A positive Darier’s sign is a typical finding. Blistering of the skin may also be observed, particularly in patients with diffuse cutaneous involvement. The diagnosis CM is based on typical skin lesions, demonstration of characteristic infiltrates of MCs on biopsy, and lack of SM criteria [51,69]. The serum tryptase levels in CM are usually < 20 ng/ml [4–6,69].

Three major forms of CM are recognized by the WHO: (i) urticaria pigmentosa (UP) also termed maculopapular cutaneous mastocytosis (MPCM); (ii) diffuse cutaneous mastocytosis (DCM); and (iii) mastocytoma of the skin [51,69,70]. UP is the most frequent form of CM and is characterized by a typical maculopapular rash [89,90]. Apart from classical UP, a number of rare subvariants have been described including a plaque form, a nodular form, and a telangiectatic subvariant (telangiectasia macularis eruptiva perstans [TMEP]) [51,90,98,99]. The prognosis of UP is good. In many children, skin lesions regress during puberty. Progression of pediatric CM to SM is unusual. In adults, however, the disease persists and often progresses to SM. In some patients with CM, skin lesions are extensive and accompanied by mediator-related symptoms requiring therapy. A reasonable approach in adults is to offer mediator-targeting drugs and to consider PUVA [51,90,100]. In severe cases, glucocorticoids may be recommended. Diffuse cutaneous mastocytosis (DCM) is less frequently diagnosed than UP [51,90,91,101]. Most patients are children. In contrast to UP, a more diffuse erythrodermic rash is seen [102]. The prognosis in DCM is reasonable,
but the disease may persist into adulthood. Solitary mastocytoma of the skin is also unusual [51,90,103]. Most patients are young infants. Histologically, the lesions consist of densely packed MCs without cellular atypia. In most cases the mastocytoma resolves spontaneously. If this does not occur, excision should be considered [103].

Indolent Systemic Mastocytosis (ISM)

ISM is the most frequently diagnosed variant of SM. ISM is associated with SM criteria, presence of UP-like skin lesions, and an indolent clinical course without significant organomegaly or organopathy. The prognosis appears to be good [69,70,95]. Mediator-related symptoms are frequently reported, and may represent the predominant medical problem [95,96]. The bone marrow is almost invariably affected, with multifocal dense infiltrates of MCs [52,53]. In typical ISM, the infiltration grade is rather low, and the infiltrates are sharply demarcated from normal marrow [52,53]. Typically, MCs in bone marrow smears are atypical MCs type I (Table IV) [79]. Apart from the marrow, MC infiltrates may also be detected in other organs including the liver, spleen, and the gastrointestinal tract [53–58]. In most patients, MCs express CD2 and CD25, and contain the \(c\)-kit mutation D816V [20–23,45,69]. The serum total tryptase concentration is \(\geq 4200\) ng/ml in almost all cases [4–6,85,86]. Patients with ISM are treated with “mediator-targeting” drugs including anti-histamines, but not with cytoreductive agents (Table VII) [29,30,34,95,97,104]. Skin lesions in ISM may also require treatment. In most cases, transient responses are seen after PUVA [105].

Table VI. WHO — Classification of mastocytosis*

<table>
<thead>
<tr>
<th>Variant – Term</th>
<th>Abbreviation</th>
<th>Subvariants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutaneous mastocytosis</td>
<td>CM</td>
<td>– Urticaria Pigmentosa (UP) = Maculopapular CM (MPCM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Diffuse CM (DCM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Mastocytoma of Skin</td>
</tr>
<tr>
<td>Indolent systemic mastocytosis</td>
<td>ISM</td>
<td>– Smouldering SM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Isolated bone marrow mastocytosis</td>
</tr>
<tr>
<td>Systemic mastocytosis with an associated clonal hematologic non mast cell lineage disease</td>
<td>SM-AHNMD</td>
<td>– SM-AML</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– SM-MDS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– SM-MPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– SM-HES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– SM-CMML</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– SM-NHL</td>
</tr>
<tr>
<td>Aggressive systemic mastocytosis</td>
<td>ASM</td>
<td>– Lymphadenopathic SM with eosinophilia</td>
</tr>
<tr>
<td>Mast cell leukemia</td>
<td>MCL</td>
<td>– Aleukemic MCL</td>
</tr>
<tr>
<td>Mast cell sarcoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracutaneous mastocytoma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For details of the WHO classification of mastocytosis, see refs 69 and 70.

MCs, mast cells.
Marx mastocytosis is usually 5–30 ng/ml [6]. In most patients, no therapy is required. Smouldering systemic mastocytosis (SSM) is another subentity of ISM [60–64,69]. In contrast to typical ISM, B-Findings (≥ 2) are noted (Table V). These B-Findings reflect a high burden of MCs and extension of the clonal disease to several myeloid lineages [64,69]. Clinically, the smouldering state has an uncertain prognosis and a variable clinical course. In some instances, the clinical course is long-lasting and silent. In other patients, an AHNMD or ASM develops with time. Typically, patients with SSM have a bone marrow infiltration grade > 30% (dense infiltrates), serum tryptase levels > 200 ng/ml, discrete signs of myelodysplasia or myeloproliferation in bone marrow, and palpable organomegaly (hepato-, spleno-, or lymphadenopathy) [64,69]. These B-Findings are due to organ infiltration by MCs or other myeloid cells. However, impairment of organ function (C-Findings) is not observed. The bone marrow in SSM typically contains mixed infiltrates (dense focal with an additional diffuse component) of MCs [52,53]. These MCs may be quite immature. The c-kit mutation D816V is detectable in a majority of the cases [60–64]. In most instances, the mutation is also detected in other myeloid lineages and thus in unfractionated blood leukocytes [60–64]. The treatment of SSM is identical to that in patients with ISM. However, SSM-patients should be observed closely for signs of progression or occurrence of an AHNMD.

SM with Associated clonal Hematologic Non-Mast cell lineage Disease, AHNMD

In a group of patients with SM, an AHNMD may be diagnosed [65–70]. In these patients, criteria to diagnose an AHNMD as well as SM-criteria must be met [69]. Patients with SM-AHNMD are categorized according to the AHNMD and the type of SM. In most cases, a myeloid neoplasm such as a myeloproliferative disorder (such as idiopathic myelofibrosis, IMF or the hypereosinophilic syndrome, HES), or a myeloid leukemia develops [65–70]. Myelodysplastic syndromes may also be diagnosed in patients with SM-AHNMD. In contrast, the occurrence of a lymphoid neoplasm is a rare event. In all patients, separate treatment plans for SM and the AHNMD should be established. In these patients, SM should be treated as if no AHNMD is present, and AHNMD as if no SM had been diagnosed (Table VII). Likewise, in patients with SM and associated hypereosinophilic syndrome (SM-HES) with FIPL1/PDGFRA fusion gene, STI571 (Imatinib) has been shown to produce reasonable responses which are similar to that seen in HES patients without SM [106,107]. In patients with SM-AML, polychemotherapy (that would be given in patients with AML without SM) may induce complete hematologic remission of AML [67,108]. An important aspect in SM-AHNMD is that the SM component may present as ISM or ASM, which in turn, has implications for determining the treatment plan. In some patients, cytoreductive
drugs may show beneficial effects for both ASM and the AHNMD.

Aggressive Systemic Mastocytosis (ASM)

This rare aggressive subvariant of SM (ASM) is characterized by organopathy caused by pathologic infiltration of various organs by neoplastic MCs and the resulting impairment of organ function [27 – 30,69,70,92]. In contrast to MCL, the bone marrow smear shows less than 20% MCs [69,92]. In contrast to ISM or SSM, C-Findings which indicate compromising organopathy due to MC infiltration, are detectable in patients with ASM (Table V). In particular, patients show one of the following: (1) significant cytopenia(s); (2) impairment of liver function due to MC infiltration, often with ascites; (3) osteolyses with pathologic fractures; (4) malabsorption with weight loss; (5) splenomegaly with hypersplenism; or (6) life-threatening impairment of organ function in other organ systems [69,70,92]. The most commonly affected organs are the liver, bone marrow, and the skeletal system. UP-like skin lesions are usually absent [69,70,92]. The histology of the bone marrow in ASM shows a variable degree of infiltration. The MC infiltrates are often mixed (dense focal + diffuse) [52,53]. The bone marrow cytology may disclose major MC atypia with occurrence of promastocytes and metachromatic blasts [69,79]. Serum tryptase levels are elevated, and in some cases, are quite high. Patients with ASM are candidates for treatment with cytoreductive drugs (Table VII). Patients with a relatively slow progression are usually treated with glucocorticoids (prednisone) and interferon alpha (IFN-α) [92,109 – 113]. Prednisone (50 – 75 mg p.o. daily) may be initiated a few days before IFN-α is administered (3 million I.U. s.c. three times a week) [34,92,97,113]. During the first days of treatment, the patient should be carefully monitored. After a few weeks, the interferon dosage can usually be escalated to 3 – 5 million units per day, and prednisone tapered to a low maintenance dose (12.5 mg/day or less) or even discontinued. In patients with severe osteoporosis, IFN-α can be administered without glucocorticoids [92,97]. In these patients, the use of biphosphonates is also recommended. Patients with ASM with rapid disease progression, signs of progression to MCL, or failure to respond to interferon-alpha, are candidates for 2CdA or other chemotherapy (Table VII) [34,92,94,114 – 116]. The use of targeted drugs in ASM has also been considered. Imatinib (STI571) has been described as being effective in some of these patients. In fact, several SM patients with wild type c-kit or c-kit mutations other than D816V appear to respond to Imatinib [38,107]. However, most patients with ASM have the D816V c-kit mutation which appears to confer relative resistance against STI571 [117 – 119]. Therefore, it can be expected that Imatinib will not show significant beneficial effects in the majority of patients with ASM or MCL, at least when used as a single agent. Currently, a number of drugs are being examined for their potential to overcome D816V-based resistance of c-kit against STI571.

Mast Cell Leukemia (MCL) and Mast Cell Sarcoma (MCS)

Mast cell leukemia (MCL) is a rare aggressive MC neoplasm defined by increased numbers of MCs in bone marrow smears (≥ 20%) and by circulating MCs [27 – 30,92 – 94]. Patients typically suffer from rapidly progressive organopathy involving the liver, bone marrow and other organs. The bone marrow typically shows a diffuse plus dense infiltration with MCs [69,70,79,92 – 94]. MCs are often immature, show a blast-like morphology, or/and have polylobed nuclei (promastocytes) [69,79]. In typical MCL, MCs account for more than 10% of blood leukocytes [69,79,94]. In a smaller group of patients, pancytopenia occurs and MCs account for less than 10% (aleukemic variant of MCL) [69,79,94]. In many patients, MCs express CD2 and CD25. The c-kit mutation D816V may be detected. The prognosis in MCL is poor. Most patients survive less than 1 year and respond poorly to cytoreductive drugs or chemotherapy [69,79,92,94]. A curative therapy for MCL is currently not available. Chemotherapy regimens employing substances otherwise used for treatment of AML (with or without 2CdA) may be considered (Table VII) [94]. Another experimental option is bone marrow transplantation, although no experience exists concerning responses and mortality.

Mast cell sarcoma (MCS) is an extremely rare form of mastocytosis. To date, the authors are aware of only 3 well-documented cases [120 – 122]. The disease is defined by a local destructive sarcoma-like growth of a tumor consisting of highly atypical MCs [120 – 122]. At initial diagnosis, no systemic involvement is found. However, secondary generalization with involvement of visceral organs and hematopoietic tissues has been described [120 – 122]. The terminal phase may be indistinguishable from ASM or MCL [120,122]. The prognosis in patients with MC sarcoma is grave. Mast cell sarcoma should not be confused with extracutaneous mastocytoma, a rare benign MC tumor without destructive growth.

Concluding remarks

During the last few years, major advances in mastocytosis research have been made including...
the identification of molecular markers and potential drug targets in neoplastic mast cells and the formulation of diagnostic criteria. An important aim for the near future will be to standardize diagnostic techniques, response criteria, and outcomes in order to establish a useful basis for the design of clinical trials. There is also the expectation that some of the newly described molecular and genetic findings in patients with mastocytosis will form the basis of novel therapeutic approaches.

References

[119] Frost, M.J., Ferrao, P.T., Hughes, T.P. and Ashman, L.K. (2002) “Juxtamembrane mutant V560GKit is more sensitive to Imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816VKit is resistant to Imatinib (STI571) compared with wild-type KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory type mutations”, Blood, 99, 1741 – 1744.

